bcc / myrrix-edition
The "Myrrix Edition"
Installs: 1
Dependents: 0
Suggesters: 0
Security: 0
Stars: 7
Watchers: 3
Forks: 1
Open Issues: 0
Language:JavaScript
Requires
- php: >=5.4
- bcc/myrrix-bundle: *
- doctrine/doctrine-bundle: 1.2.*
- doctrine/orm: >=2.2.3,<2.4-dev
- jms/di-extra-bundle: 1.3.*
- jms/security-extra-bundle: 1.4.*
- sensio/distribution-bundle: 2.2.*
- sensio/framework-extra-bundle: 2.2.*
- sensio/generator-bundle: 2.2.*
- symfony/assetic-bundle: 2.1.*
- symfony/monolog-bundle: 2.2.*
- symfony/swiftmailer-bundle: 2.2.*
- symfony/symfony: 2.2.*
- twig/extensions: 1.0.*
This package is not auto-updated.
Last update: 2025-01-18 15:53:44 UTC
README
Welcome to the Myrrix demo for Symfony2. It relies on the Symfony2 standard edition, adding BCCMyrrixBundle, and a tweaked version of the AcmeBundle that runs an example of recommender engine based on the MovieLens dataset.
- Whats inside
- Symfony2 standard edition 2.2 RC1 (http://symfony.com/)
- Myrrix serving layer 0.9 (http://myrrix.com/)
- The MovieLens dataset 1M (http://www.grouplens.org/node/73)
- A AcmeDemoBundle working as a recommending website
- Running the example
You first need to have composer installed:
curl -s http://getcomposer.org/installer | php
First get the code. You can download it or get it via composer:
php composer.phar create-project bcc/myrrix-edition path/to/install
Start myrrix using this command line:
java -Dmodel.features=18 -jar myrrix.jar --localInputDir app/cache/myrrix --port 84
Then install the dependencies:
php composer.phar install
You then need to setup your database (you can change any default configuration in the app/config/parameters.yml file):
php app/console doctrine:database:create
php app/console doctrine:schema:create
Then you have to load all the data of the MovieLens dataset into your database and into the myrrix recommender engine:
php app/console --env=prod acme:demo:load-data-set
This will take a very long time, it will output a message every 1000 inserted rows, there are 1 000 000 items to load.
You can now navigate into the root url and test the recommender engine.